Subspace Gaussian mixture models for dialogues classification

نویسندگان

  • Mohamed Bouallegue
  • Mohamed Morchid
  • Richard Dufour
  • Driss Matrouf
  • Georges Linarès
  • Renato De Mori
چکیده

The main objective of this paper is to identify themes from dialogues of telephone conversations in a real-life customer care service. In order to capture significant semantic content in spite of high expression variability, features are extracted in a large number of hidden spaces constructed with a Latent Dirichlet Allocation (LDA) approach. Multiple views of a spoke document can then be represented with several hidden topic models. Nonetheless, the model diversity due to the multi-model approach introduces a new type of variability. An approach is proposed based on features extracted in a common homogenous subspace with the purpose of reducing the multi-span representation variability. A Gaussian Mixture Model subspace model, inspired by previous work on speaker identification, is proposed for theme identification. This representation, novel for theme classification, is compared with the direct application of multiple topic-model representations. Experiments are reported using a corpus collected in the call center of the Paris Transportation Service. Results show the effectiveness of the proposed representation paradigm with a theme identification accuracy of 78.8%, showing a significant improvement with respect to previous results on the same corpus.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discriminative Training of Subspace Gaussian Mixture Model for Pattern Classification

The Gaussian mixture model (GMM) has been widely used in pattern recognition problems for clustering and probability density estimation. For pattern classification, however, the GMM has to consider two issues: model structure in high-dimensional space and discriminative training for optimizing the decision boundary. In this paper, we propose a classification method using subspace GMM density mo...

متن کامل

Recognizing the Emotional State Changes in Human Utterance by a Learning Statistical Method based on Gaussian Mixture Model

Speech is one of the most opulent and instant methods to express emotional characteristics of human beings, which conveys the cognitive and semantic concepts among humans. In this study, a statistical-based method for emotional recognition of speech signals is proposed, and a learning approach is introduced, which is based on the statistical model to classify internal feelings of the utterance....

متن کامل

Negative Selection Based Data Classification with Flexible Boundaries

One of the most important artificial immune algorithms is negative selection algorithm, which is an anomaly detection and pattern recognition technique; however, recent research has shown the successful application of this algorithm in data classification. Most of the negative selection methods consider deterministic boundaries to distinguish between self and non-self-spaces. In this paper, two...

متن کامل

Gaussian Mixture Models with Component Means Constrained in Pre-selected Subspaces

We investigate a Gaussian mixture model (GMM) with component means constrained in a pre-selected subspace. Applications to classification and clustering are explored. An EM-type estimation algorithm is derived. We prove that the subspace containing the component means of a GMM with a common covariance matrix also contains the modes of the density and the class means. This motivates us to find a...

متن کامل

Speaker vectors from subspace Gaussian mixture model as complementary features for language identification

In this paper, we explore new high-level features for language identification. The recently introduced Subspace Gaussian Mixture Models (SGMM) provide an elegant and efficient way for GMM acoustic modelling, with mean supervectors represented in a low-dimensional representative subspace. SGMMs also provide an efficient way of speaker adaptation by means of lowdimensional vectors. In our framewo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014